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Using nonlinear mixed effects models to 
estimate size-age relationships for black 
bears 

R.E. McRoberts, R.T. Brooks, and L.L. Rogers 

Abstract: Size-age relationships for three physical characteristics, body length, zygomatic width, and pad width, were 
modeled for black bears (Ursus americanus) captured in northeastern Minnesota, U.S.A. Because the curves representing 
size-age relationships were nonlinear, and because some of the data consist of repeated, longitudinal observations for multiple 
bears, nonlinear mixed effects model analyses were required. The results are presented as parameter estimates with standard 
errors and estimated population curves with 95% contidence intervals. Variance estimates obtained using mixed-effects models 
are compared with erroneous estimates obtained using ordinary least-squares techniques. Comparisons are made between male 
and female Minnesota bears with respect to parameter estimates and estimated population curves. In addition. the results for 
Minnesota bears are compared with results from similar studies on bears in other regions. 

Resume : Les relations taille-age de trois caracteristiques physiques, longueur du corps, largeur de Ia tete au niveau de I' arc 
zygomatique, largeur de Ia paume, ont servia Ia creation d'un modele chez des Ours noirs (Ursus americanus) captures dans le 
nord-est du Minnesota, E.-U. Comme les courbes representant les relations taille-age ne sont pas lineaires et parce que 
certaines des donnees sont des observations longitudinales repetees de plusieurs ours, nous avons du utiliser des analyses de 
modeles non lineaires d'effets mixtes. Les resultats sont presentes sous forme d'estimations des variables demographiques avec 
erreurs typeset de courbes d'estimation des populations avec intervalles de confiance de 95%. Les estimations de Ia variance 
obtenues a partir des modeles d' effets mixtes ont ete Gomparees aux estimations erronees obtenues par Ia technique usuelle des 
moindres carres. Les males et les femelles de Ia population du Minnesota sont compares entre eux des points de vue de 
I' estimation des variables et de I' estimation des courbes de Ia population. De plus, les resultats obtenus chez les ours du 
Minnesota sont compares a ceux obtenus au cours d'autres etudes en d'autres regions. 
[Traduit par Ia Redaction] 

Introduction 
Quantitatively describing an animal species' characteristic 
size-age relationships, both for individuals and populations, 
is an important component of population studies (Fitzhugh 
1976). Estimates of size-age curves, together with reliable 
precision estimates, help in the assessment of differences 
among populations (Kingsley et al. 1988; Y occoz et al. 1993 ), 
changes in populations over time (Kingsley 1979), and differ-
ences between the sexes within a population (Sauer 1975; Alt 
1980). Animal growth and size-age relationships are often 
analyzed using longitudinal data consisting of repeated obser-
vations over time on each one of many animals (Fitzhugh 
1976; Kaufmann 1981; Zullinger et al. 1984). Statistical pro-
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cedures that accommodate the nature of these data must be 
used if unbiased parameter estimates and reliable precision 
estimates are to be obtained. A long-standing difficulty in 
many growth and size-age studies is that appropriate meth-
ods have not been available for dealing with repeated and 
serially correlated observations for multiple individuals 
(Fitzhugh 1976; Yoccoz et al. 1993). Recent advances in non-
linear mixed effects modeling have the potential to substan-
tially alleviate this difficulty. To assess the performance of 
nonlinear mixed effects modeling procedures in this context, 
we estimated size-age relationships for northeastern Minne-
sota black bears (Ursus americanus), compared the results 
with estimates from other geographic regions, and compared 
variance estimates with those that would have been obtained 
erroneously with ordinary least squares. 

Methods 

Data collection 
Data were collected from bears captured in the Superior National 
Forest in northeastern Minnesota, U.S .A. (Rogers 1987). Vegetation 
in the study area contains components of both the boreal and temper-
ate deciduous forests and is typical of the northern Great Lakes 
region (Maycock and Curtis 1960). The climate is cool-temperate, 
and during the data-collection period the frost-free growing season 
averaged 118 days. The ground was generally snow-covered from 
mid-November through mid-ApriL and bears were typically in dens 
from mid-October until mid-April (Rogers 1987). 
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Fig. 1. Distributions of male (a ) and female bears (b) by age. 
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Bears were captured in foot snares, culvert live traps, or dens and 
were immobilized with drugs for examination and measurement 
(Rogers 1987). At the time of capture, each bear was sexed and 
weighed. and body length. zygomatic width, and pad width were 
measured. Body length was measured along the contour of the back 
from the tip of the nosepad to the tip of the bone in the tail. taking 
care to position the muzzle. head, back, and tail in as straight a line as 
possible. Zygomatic width. including skin and fat, was measured 
with calipers at the zygomatic arches of the skull. The forefoot pad 
was measured across its greatest width, taking care to flatten the pad 
to approximate its shape when bearing weight. Maximum pad width 
was measured between the hairlines at the edges of the calloused pad. 
Age was detennined by counting cementum annuli in longitudinal 
sections from a first upper premolar (Stoneburg and Jonkel 1966; 
Willey 1974: Rogers 1978). Bears were ear-tagged and some were 
radio-collared to facilitate serial measurements. 

The size-age analyses are based on up to 88 observations from as 
many as 68 male bears ranging in age from less than l year to 14 
years and on up to 120 observations from as many as 69 female bears 
ranging in age from less than l year to 22 years (Fig. 1 ). No more 

than seven observations were available for any bear. and only a single 
observation for many bears (Fig. 2). Owing to some missing and 
unusable observations, the same numbers of bears and observations 
were not available for the analyses of all variables (Table 1). 

Data analyses 
Selection of an appropriate analytical technique requires that the 
nature of the study and the data-collection strategy first be identified. 
In a discussion of the characteristics that distinguish experiments and 
observ'ational studies, Wold ( 1956) set down three criteria for exper-
iments: ( 1) replications are made under similar conditions; (2) repli-
cations are mutually independent: and (3) uncontrolled variation in 
the replications is subjected to randomization. 

On the basis of these criteria. both Wold (1956) and McKinlav 
(1985) characterize cross-sectional and longitudinal studies as expe;-
imems, while arguing that observational studies violate at least one 
criterion. 

Cross-sectional studies are typically based on mutually indepen-
dent observations obtained from different subjects. Observations 
within replications are collected in the same short time interval, are 
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Fig. 2. Distributions of male (a) and female bears (b) by number of observations per bear. 
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Table 1. Mixed effects models estimates for E(Y) = ~1[1- ~2e-PJ<c-ll]. 

Variable Sex nobs nbears Var(bil) 

Body length Male 73 64 90.44 
Female 91 62 32.51 

Zygomatic width Male 85 64 1.68 
Female 99 63 0.59 

Pad width Male 88 68 0.27 
Female 120 69 0.23 

murually independent. and are made under similar conditions to 
minimize or provide measures of uncontrolled variation. Although 
cross-sectional data preclude any analysis of individual subjects, sta-
tistical analyses need not accommodate within-subject variation or 
correlation. 

Longitudinal studies are typically based on multiple observations 
from multiple subjects and feature serial correlation and both within 

0 ~I± SE(~I) ~2 ± SE(~2l ~3 ± SE(~3) <>;:es 

0.65 169.65±2.02 0.43±0.01 0.38±0.02 
5.42 141.37± 1.20 0.36±0.01 0.54±0.03 

0.46 22.63±0.94 0.50±0.02 0.20±0.03 
0.17 16.01±0. 19 0.29±0.03 0.44±0.04 

0.53 12.43±0.37 0.38±0.03 0.38±0.02 
0.04 9.37±0.08 0.21±0.01 0.70±0.10 

and among subject sources of variation. These studies focus on the 
analysis of individual subjects and the development of population 
relationships based on the aggregation of individual relationships. 
Although population analyses for longitudinal studies are more com-
plex than for cross-sectional studies, some of the difficulties can be 
alleviated with balanced, regularly spaced designs and models that 
are linear in the parameters. 
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Fig. 3. Zygomatic width versus age profiles for female bears. 
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Wold ( 1956) defines observational data as those in which at least 
one of his criteria is violated, while McKinlay ( 1985) uses "observa-
tional" to denote investigations described negatively as "not experi-
ments." Because in many investigations of size-age relationships in 
wildlife populations the observations must be obtained as they 
become available, they typically violate one or more of Wold's crite-
ria for experiments. Such is the case for our study, where there is no 
opportunity for randomization, experimental replication, or control 
for external factors. In addition, the observations were obtained with-
out regard to time of year, age, size, annual environmental condi-
tions, or the design features that simplify analyses. Finally, the data 
contain multiple observations for some subjects, as in a longitudinal 
study, but only single observations for the remaining subjects, as in a 
cross-sectional study. Thus, our investigation is an observational 
study and particular caution is necessary to assure that analytical 
techniques accommodate the features of the data. 

Caution must also be exercised when comparing the results from 
observational studies with those from other studies. When an appro-
priate statistical technique is correctly applied for each type of study, 
unbiased estimates of model parameters and population curves are 
obtained, as well as valid variance estimates. Using these estimates, 
crude, but valid, statistical comparisons of population curves can be 
made, and when the same models are used, valid statistical compari-
sons of model parameters can also be made. However. despite the 
statistical validity of these comparisons, the biological validity may 
be questionable because of differences in replication and randomiza-
tion strategies, control of external factors, and the effects of nonlin-
earity when observations from individuals are aggregated to produce 
population estimates. 

For our study, care was taken to accommodate numerous charac-
teristics of the data, of which three are crucial to the selection of an 
analytical technique: (1) multiple observations were obtained for 
some bears; (2) size-age curves for individual bears deviated from 
population size-age curves; and (3) mathematical models of size-age 
relationships for both individuals and the population were nonlinear 
in the parameters (Fig. 3). First, because multiple measurements 
were obtained for some bears. the observations are characterized as 
repeated-measures data. In addition, because the multiple observa-

tions for individuals could not be randomized with respect to age, 
they are further characterized as longitudinal data. Thus, even though 
our investigation is considered an observational study, the analytical 
technique must accommodate longitudinal data. Second, under the 
assumption that the captured bears represent a random sample from 
the population of interest, two sources of vruiation must be accom-
modated in the analyses: (1) the deviations of observations from indi-
vidual size-age curves and (2) the deviations of individual size-age 
curves from population size-age curves. Failure to accommodate the 
two sources of variation separately may result in unreliable estimates 
of parameters, population curves, residual variation, covariance 
structures, and confidence intervals. Finally, the nonlinear form of 
the size-age models requires iterative techniques that compound the 
difficulty of accommodating multiple sources of variation. 

In recent years, procedures have been developed for estimating the 
parameters of nonlinear population models using longitudinal data 
for multiple individuals (Davidian and Giltinan 1995; Littell et al. 
1996; Vonesh and Chinchilli 1998). Models associated with these 
techniques are known as nonlinear mixed effects models because 
they contain both fixed effects population parameters and random 
effects representing the deviations of the parameters for individuals 
from the population parameters. In addition, these techniques accom-
modate unbalanced, irregularly spaced observations and serial corre-
lation among residuals for the same subject. 

A simple example illustrates the dangers inherent in failure to use 
mixed effects models analyses when required by the data. We used 
nonlinear ordinary least squares (OLS) and mixed-effects models 
(MEM) analyses to estimate population curves for zygomatic width 
versus age based on data for four female bears. The OLS analysis 
incorrectly assumed that the observations were independent and esti-
mated a population curve that characterized only the observations. 
The MEM analysis correctly estimated a population curve that char-
acterized the population of individual curves (Fig. 4a). In addition, 
the OLS approximate 95% confidence interval is too narrow because 
of the erroneous assumption of independent observations; the MEM 
confidence interval is much wider because it acknowledges that the 
observations represent only four individuals (Fig. 4b). Thus, failure 
to deal with the longitudinal nature of the data for multiple individu-
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Fig. 4. Results from mixed-effects models (MEM) versus ordinary least squares <OLS) models. (a) Population curves. (b) Approximate 95% 
confidence intervals. 
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als may result in inadequate estimates of population curves and erro-
neous confidence intervals. 

The general form of the mixed effects model for this application 
may be expressed as 

[I] Yjj = j(tij; j3 + b;) + Eij 

where 
tij is the age of the ith bear at its jth observation 
Yij is the dependent variable corresponding to tu 
(3 = (~1.~2 .... . ~P) is a vector of fixed-effects population parameters 

of length p 

8 10 12 14 16 
Age (year s) 

MEM population curve 
MEM approx. 9 5% confidence interval 
OLS population curve 
OLS approx. 9 5% confidence inter val 
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bi = (bil ,bi2, ... ,birl is a vector of random effects of length r. r s p; 
bi represents the deviations of tl)e parameters for the ith individual 
bear from the population parameters and is assumed to be distributed 
N(O,V) 

f is a mathematical function expressing the relationship among j3, 
bi, and t 

eij is a residual representing the deviation of Yij from the corre-
s~ondmg model ~xpectation for that individual: Eij is assumed to be 
dtstnbuted N(O,cr-.t\j) , where .t\i IS the matrix of correlations among 
residuals for the ith bear; residuals for different bears are assumed to 
be independent 
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Model parameters were estimated and corresponding statistics 
were calculated using the nonlinear mixed effects models macro in 
the Statistical Analysis System (SAS) software (Littell eta!. 1996). 

An appropriate mathematical form for the function f was deter-
mined by comparing likelihood statistics for a variety of two- and 
three-parameter models. For each mathematical form, the appropri-
ate number of random effects to be included and the appropriate 
residual correlation structure were determined using likelihood-ratio 
tests of significance. For all analyses, the number of observations 
was required to exceed the total number of parameters. which is cal-
culated as 

111o1 = P + r 11bears 

where p is the number of fixed effects population parameters, r is the 
number of random effects per bear, and nbears is the number of bears. 
Thus. it was not possible to include random effects for all fixed 
effects population parameters for the complete data sets because of 
the large numbers of bears with only one or two observations. How-
ever, tests of combinations of random effects were conducted on the 
largest data sets that would support the analyses. 

The statistical expectation of the model selected to describe the 
black bear size-age relationships for both individuals and popula-
tions has the general mathematical form 

(2] E(Y) = ~1( 1 - ~2 e·Pl1
) 

where Y. t, and f3 are as defined for [1]. This model is often referred to 
as the monomolecular model (Yang et a!. 1978) and can be derived 
from the von Bertalanffy model ( 1957), provided a theoretical con-
straint on a parameter is relaxed. The parameters of [2] can be inter-
preted in a manner similar to those for the von Bertalanffy model: ~~ 
is asymptotic size; I - ~2 is birth size as a proportion of asymptotic 
size; and ~3 is a growth rate constant. Because birth date is difficult to 
estimate accurately and because few observations for the first few 
months were available, model [2] was revised as follows: 
[3a] E(Y) = ~~[1- ~2 e· PJ<r-I )] 

where Y. t. ~1• and ~3 are as defined for [2], but l- ~2 is now size at 
1 year of age as a proponion of asymptotic size. 

The analyses for [3a] indicated that correlation among residuals 
for the same bears was small and usually nonsignificant; this correla-
tion was ignored for the final analyses. For all three characteristics 
and for both sexes, the random effect corresponding to fixed effects 
population parameter~~ was the only random effect that significantly 
(a.= 0.05) improved the quality of fit. This result held for complete 
data sets and for reduced data sets for which two or more random 
effects were included. Thus, the final mixed effects model used to 
describe black bear size-age relationships is given by 

[3b] Yij = (~1 + bil ) [I- ~2 e-PJUiJ - 1>] + Eij 

where Y. t. (3, and b; are as defined for [3a] and Eisa residual devia-
tion assumed to be distributed N(O.~es>· 

A 95% confidence interval for each estimated population curve 
was approximated as 

[4] Yk ± 2 SE(Yk) 

where 
1\ ... " ... .... ... ... 

[5] SE (Yk) = Zk(f3,b;.tk)' Cov (f3) Zk( f3,b ;. tk) 

Cov (~) is the estimate of th:: ~ovariance matrix of the population 
parameter estimates. and Zk((3,b;.tk) is the vector of first de_riv__arives 
off with respect to the population parameters evaluated at f3, b;. and 
tk. 

Results and discussion 
Nonlinear mixed-effects modeling 
The mixed effects modeling procedure adequately estimated 
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size-age curves for both individuals and populations. Larger 
numbers of observations for individual bears would produce 
greater precision because greater numbers of random effects 
could be included in the analyses and tests of significance 
would be more powerful. 

Assessment of the variation for repeated. longitudinal 
observations is more difficult than for independent observa-
tions. where all the variation is summarized in the residual 
variance, &;es· For the former case, assessment of variation 
requireS knowledge Of bOth the residUa[ VarianCe, G~S' arOUnd 
individual curves and the variation among estimates of indi-
vidual curves as expressed by V. When OLS and MEM are 
correctly applied, cr;es is interpreted in the same manner for 
both procedures. The geometric interpretation of V for MEM 
analyses is fairly simple; it is the variation among the esti-
mated curves. The analytical interpretation of V, however, 
may be difficult to express in an intuitive manner for two rea-
sons: ( l) Vis model-dependent and (2) the effects of V cannot 
be readily visualized without sampling from the distribution 
and graphing the curves that result. Both the geometric and 
analytical interpretations of V are simplified for [3b] because 
there is only one random effect and the parameter to which it 
corresponds has straightfo,rward geometrical and biological 
interpretations. For [3b], V is interpreted as the variation in 
asymptotes of the curves for individual bears or equivalently 
as the variation in maximum sizes of the bears. 

For data requiring only OLS procedures, there is no V to 
estimate, because all the observations are independent and 
each represents a different individual. However, when OLS 
procedures are incorrectly applied to data requiring MEM 
procedures, the single estimate of variation, herein labeled 
crtLS• represents a pooling of both residual variation and the 
variation among individual curves. In these cases, crbLs is fre-
quently, but incorrectly, used as an estimate of &;es· Unless 
there is virtually no variation among individual curves, cr6Ls 
usually overestimates cr;es• as is apparent in comparisons of 
cr;es-MEM and crbLs for OUr data sets: (1) for male body length, 
crtes-MEM = 0.65, while cr6Ls = 57.02; (2) for female body 
length, cr;es-MEM = 5.42, while crbLs = 28 .24; (3) for male 
zygomatic width, cr;es-MEM = 0.46, while crbLs = 1.24; ( 4) for 
female zygomatic width, G~s-MEM = 0.17, while cr6Ls = 0.54; 
(5) for male pad width, cr;es-MEM = 0.26, While GbLS = 0.56; 
and (6) for female pad width, Gfes-MEM = 0.04, while cr6Ls = 
0.26. 

Although reliable confidence intervals require separate 
and accurate estimates for both sources of variation, the 
widths of OLS and MEM confidence intervals were similar 
for our data sets . We partially attribute this result to the fact 
that many of our data were independent because most bears 
had only a single observation. 

Growth and sexual dimorphism in growth 
Comparisons between male and female Minnesota black 
bears are based on the estimated population parameter esti-
mates (Table 1), evaluation of the model using these parame-
ter estimates, the estimated population curves, and likelihood-
ratio tests of significance. For all three characteristics, the 
estimated population curve for males differed significantly 
(a.= 0.01) from the curve for females , and each parameter 
estimate for the male population curve differed significantly 
(a.= 0.01) from the corresponding parameter estimate for the 
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Fig. 5. Body length versus age. 
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Fig. 6. Zygomatic width versus age. 
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female population curve. These results produce three features 
that distinguish the male and female population size-age 
curves: (1) male bears were larger at all ages; (2) female bears 
approached asymptotic size at greater rates than did male 
bears; and (3) growth continued at a greater age for male 
bears. 

The estimated population curves (Figs. 5-7) indicate that 
male Minnesota bears were larger than female Minnesota 

bears at all ages . Sizes at 1 year of age were estimated as a 
proeortionA of asymptotic size by I - ~2 and in absolute terms 
by ~1(1- ~2). As a proportion of asymptotic size, males were 
significantly (a= 0.05) smaller than females at 1 year of age 
for all three physical characteristics. However, with respect to 
absolute size at l year of age, males were significantly (a = 
0.05) larger than females with respect to body length but were 
not significantly (a = 0.05) different with respect to zygo-
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Fig. 7. Pad width versus age. 
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matic width or pad width. Population estimates of asymptotic 
size, ~~, indicate that male Minnesota bears grew signifi-
cantly (a= 0.05) larger than females: 20% larger with respect 
to body length, 42% larger with respect to zygomatic width, 
and 33% larger with respect to pad width. 

The nonlinear form of [3a] with respect to age indicates 
that growth rates for both male and female bears change with 
age. For each characteristic, estimates of ~3 were positive for 
both sexes but greater for females than for males. These 
results indicated that growth rates decreased as age increased 
for both sexes and that females approached asymptotic size 
more rapidly than did males. On average, female Minnesota 
bears reach reproductive maturity, the age at first reproduc-
tion, at 6.3 years (Rogers 1987). By this age, females had 
attained 97.9% of their asymptotic body length, 97.2% of 
their asymptotic zygomatic width, and 99.5% of their asymp-
totic pad width. Males did not attain these percentages until 
9.0, 15.4, and 12.3 years of age, respectively. This result is 
consistent with the observation for brown bears in northwest-
em Canada and Alaska (Kingsley et a!. 1988) that growth 
rates for males were less than those for females. 

We compared age-specific population estimates for Minne-
sota bears with corresponding means reported for black bears 
in other regions: New York (Sauer 1975), Alaska (Rausch 
1961 ), and Pennsylvania (Alt 1980). The age-specific popula-
tion estimates for Minnesota bears were obtained by evaluat-
ing model [3a] using the population parameter estimates 
(Table l). These comparisons should be viewed with some 
skepticism, because there is no assurance that the effects of 
external factors were similar. In addition, the comparisons 
were not statistical, because variance estimates were not 
always available. Nevertheless, for all three characteristics 
and for both sexes, Minnesota bears were similar to or larger 
than New York bears. Also. both male and female Minnesota 
bears were larger than Alaska bears with respect to zygomatic 

width. However, Pennsylvania bears of both sexes had 
greater age-specific body lengths than Minnesota bears. 
Because Minnesota cubs were similar in body length to Penn-
sylvania cubs, the latter result confirms Alt's observation that 
"Pennsylvania bears appear to be growing more rapidly ... than 
[bears] from other areas" (Alt 1980). 

Conclusions 
The nonlinear mixed effects modeling approach to estimat-
ing size-age relationships produced adequate estimates for 
both individual and population curves. The population curves 
characterized the population of individual curves rather than 
just the observations for the individuals sampled. Failure to 
apply nonlinear mixed effects modeling to data consisting of 
longitudinal, repeated-measures observations for multiple 
individuals may produce bias in the population estimates and 
erroneous confidence intervals for population parameters and 
curves. 

Male Minnesota bears were larger at all ages than female 
bears, and continued to grow at a greater age than female 
bears. The greatest sex differences were for asymptotic zygo-
matic width, asymptotic pad width, and the age at which 
growth is completed. For the characteristics compared, Min-
nesota bears were larger than Alaska bears and similar to or 
larger than New York bears, but smaller than Pennsylvania 
bears. 

The results of comparing Minnesota bears by sex and com-
paring Minnesota bears with bears from other regions were 
neither unique nor surprising; in fact, they were quite consis-
tent with biological expectations. Although this consistency 
may be regarded as a mundane observation from a biological 
perspective, from a statistical perspective it ought to assure 
researchers unfamiliar with or skeptical of nonlinear mixed 
effects modeling techniques and encourage them to apply 
these techniques in appropriate circumstances. 
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